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1. Introduction

The success of string theory in providing microscopic understanding of the entropy of

extremal black holes has been extended in recent times to extremal small black holes with

at least two charges [1]–[7]. For supersymmetric two-charge black holes the statistical

entropy coming from counting the bound state degeneracy has been checked to agree with

the one calculated using Wald’s entropy formula [8] in higher-derivative supergravity [5, 6].

Somewhat miraculously, the subleading terms have also been shown to agree in certain

cases [3]. The entropy function formalism developed by Sen [6] to calculate Wald’s entropy

for extremal black holes has been investigated in other contexts in [10]–[14].

The most studied extremal small black hole is the one made from a long heterotic

string wrapping a circle carrying winding charge w and momentum n, namely, the FP

system. A simple scaling argument using Sen’s entropy function formalism [5, 6], shows

that incorporating string tree-level higher derivative corrections gives rise to an entropy

proportional to
√

nw in agreement with the microscopic state counting. A question that

naturally arises is what happens if one includes higher 10-dimensional string-loop correc-

tions as well in calculating Wald’s entropy. Naively, one would not expect a simple answer

to this question.1 We will show in this note that contrary to this naive intuition, a simple

1In the context of supersymmetric black holes carrying three or more charges, this question was partly

investigated in [9]
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formula for the entropy emerges when the 10-dimensional string-loop corrections are in-

cluded. The modified entropy formula predicted by the macroscopic scaling argument will

be shown to behave like

SBH ∼
√

anw + b n ,

for n À w À 1 with a and b being constants. There are four important points to note

about this formula.

1. When the square-root is expanded, we get corrections proportional to powers of
√

n/w which will be more dominant than the subleading terms arising from the

Hardy-Ramanujan-Rademacher formula for the entropy of the long string which begin

with log(nw). Hence, it is important to understand the terms arising from the 10-

dimensional string-loop corrections.

2. The formula admits a non-zero formal limit when w → 0 and we have a single charge.

In this case, string-loop effects become very important.

3. Motivated by quantum entanglement arguments, Kallosh and Linde [15] proposed

that the single charge black hole entropy could be interpreted as arising from non-

normalizability of a qubit wave-function and conjectured that the black hole entropy

formula could be made more “universal” of the form
√

aq1q2 + bq1 for the two-charge

case. Our findings nicely corroborate this conjecture.

4. T-duality invariance demands that the entropy should be invariant under the inter-

change w ↔ n. The reason for the apparent inconsistency of the above scaling is that

it has been derived in the limit n À w À 1 which has been chosen to ensure that the

α′ and gs corrections remain small thus enabling us to use a truncated low energy

higher derivative action. This leads to an entropy function which is not manifestly

invariant under T-duality. In section 2 we present one possible way to restore the

T-duality by adding new terms to the supergravity action which make it T-duality

invariant. The modified entropy formula in this instance will be invariant under n,w

interchange and in the limit n À w À 1 takes the above form.

Recently in ref. [10] we have provided evidence for the existence of extremal small black

holes with just one electric charge with D0-brane solution as the main example.2 The micro-

scopic and macroscopic entropies agreed only after including a certain subset of non-bound

states in the counting. In general there are continuous families of classically supersym-

metric states corresponding to separating the D0-branes in the nine spatial directions in

type IIA. In [10] we extracted those states from the continuous families which have SO(9)

invariance (that is, no separation among D0-branes) and associated them to the single

centered D0-brane solution. This subset of all possible non-bound states was shown to give

the correct behaviour of the leading entropy predicted by Wald’s entropy formula. This is

a rather surprising result as it has been believed that only the bound states contribute to

the entropy of an extremal black hole. Thus it raises the question of whether one should

2See also [11] for a discussion in AdS context.
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include more than the bound state entropy for the extremal black holes with more than

one charge too.

Motivated by the above discussion of the D0-brane we will include a subclass of the

classically supersymmetric multi-string configurations to the set of microstates of the two-

charge black hole considered above. We again set aside the zero modes corresponding

to separating the centers of mass of the fundamental strings. By looking at two special

examples in detail, we show that this gives results for the statistical entropy consistent

with the scaling given by the entropy function formalism.

We would like to point out that this addition of a subset of multi-string states which

are not the usual bound states is in direct contradiction to the conventional wisdom of

counting only the long string states for the black hole microstates.

Since the entropy function formalism depends only on the near horizon geometry, it is

expected that the statistical entropy should also emerge from microscopic state counting

in a quantum theory living at the horizon, or equivalently on the boundary of the AdS

geometry in the spirit of AdS/CFT correspondence (see for example [22]). We propose

that the near horizon counting should respect the macroscopic scaling.

In this note we outline two computations to check this proposal. Firstly, we use the

chiral primary partition function of superconformal quantum mechanics [20] of the D0-D4

CY3 black hole to demonstrate that its asymptotics exhibit similar scaling to our loop

corrected macroscopic result for the entropy. Secondly, motivated by the work of Kraus

and Larsen [16], we provide a central-charge argument which can lead to the same scaling

as that we find using Sen’s entropy function formalism.

The rest of this note is organized as follows. In section 2, we use the entropy function

formalism to provide a scaling argument for the string-loop corrected small black hole

macroscopic entropy. In section 3, we provide a modification of the microscopic counting

which gives rise to the same scaling. In section 4.1, we consider asymptotics of the partition

function of chiral primaries in superconformal quantum mechanics and show that it is

similar to our scaling prediction. In section 4.2, we consider loop corrections from the

central charge viewpoint. We summarize in section 5. In the appendix, we provide a

derivation of a relation between the AdS3 central charge and the black hole entropy used

in section 4.2.

2. A scaling argument

In this section we will explore the consequences of including the, hitherto neglected, 10-

dimensional string-loop corrections to the entropy of the two-charge FP black hole in het-

erotic string compactified on T 6. We use Sen’s entropy function formalism [6] to calculate

Wald’s entropy of this black hole. The main steps in using this formalism are as follows:

• Assume a near horizon geometry of the form AdS2 × Sd and assume that the fields

respect the isometries of the spacetime.

• Write down a function f defined by f =
∫

ΩSd L where L is the spacetime Lagrangian.

– 3 –
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• Define electric charges qi by qi = ∂ei
f , where ei are the electric fields at the horizon.

Take the Legendre transform of f only with respect to qi’s (even in the presence of

magnetic fields).

F = 2π(qiei − f) ,

and extremize this function with respect to the radii of AdS2 and Sd and scalar fields.

The value of F at its extremum is the black hole entropy.

We will assume that the near horizon geometry is going to be AdS2 ×S2 in the presence of

higher derivative corrections in our context. The 10-dimensional action for heterotic string

theory in string frame including the higher-loop corrections schematically takes the form

∫

d10x
√
−G

[

e−2φ(R + · · ·) +
∞∑

n=0

e2nφ[(n + 1) − loop terms]

]

, (2.1)

where · · · represent the α′ corrections at the tree-level. The string-loop terms start at

the quartic order at 1-loop and we include all the α′ corrections at each order. This

action can be dimensionally reduced on T 5 × S1 with T being the circle-size modulus and

T/S = g2
s = e2φ the 10-dimensional string coupling. This will give

f(v1, v2, v3, v4, S, T ) = Sg(v1, v2, v3 = e1T, v4 = e2/T ) + Th(v1, v2, v3, v4, α = T/S) (2.2)

Here v1 and v2 denote the radii of AdS2 and S2 respectively while e1 and e2 denote the

two electric fields of the Kaluza-Klein gauge fields coming from the 10-dimensional metric

and the B-field respectively. Taylor expanding the function h(v1, v2, v3, v4, α) in powers of

α accounts for all the higher string-loop corrections in f . To find the near horizon solution

one has to extremize f with respect to S, T , v1 and v2. The S and T equations of motion

can be written as

g − α2∂αh = 0, (v3∂v3
− v4∂v4

+ 1)(g + αh) = 0. (2.3)

The two electric charges, q1 = T∂v3
f , q2 = 1

T ∂v4
f correspond to the momentum n and

winding w of the fundamental string. These read

q1 = ST∂v3
g + T 2∂v3

h, q2 =
S

T
∂v4

g + ∂v4
h (2.4)

which can be solved for T and α to obtain

T 2 =
q1∂v4

g

(q2 − ∂v4
h)∂v3

g + ∂v3
h∂v4

g
, α =

∂v4
g

q2 − ∂v4
h

. (2.5)

Note that the right hand sides of these equations depend on α implicitly through h. The

equations of motion for v1 and v2 are

∂vi
g + α∂vi

h = 0 (2.6)

for i = 1 and 2. Then the entropy function reads

SBH = 2π(e1q1 + e2q2 − f) = 4π
v3q1

T
. (2.7)
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In obtaining the final expression we have used the equation of motion for T and the ex-

pression for q1. Now we can simply substitute the expression for T from eq. (2.5) in terms

of the charges to arrive at

SBH = 4π
√

q1 (a q2 + b) (2.8)

where a = v2
3∂v3

g/∂v4
g and b = a (∂v3

h∂v4
g− ∂v4

h∂v3
g)/∂v3

g. However, for the coefficients

a and b to be universal we have to have vi, ∂vi
g and ∂vi

h appearing in a and b to be charge

independent. Since the eqs. (2.3) and (2.6) depend on α explicitly as well as implicitly

through h the coefficients in eq. (2.8) are not completely universal. Let us first consider

two special cases where a and b do become universal.

• If we set h = 0 then b = 0 and the α dependence from eqs. (2.3) and (2.6) drops out.

These equations allow us to solve for vi and hence a becomes universal. In this case

one recovers the result of Sen [5].

• If we set q2 = 0 then α and therefore h become charge independent. In this case too

the eqs. (2.3) and (2.6) become charge independent. Then the unknown coefficient b

in the entropy becomes universal, thus recovering the result of [10].

Since we obtained eq. (2.2) from the effective action of the perturbative string, we have

α ¿ 1. However since α can be determined through the second of eq. (2.4) it depends only

on q2. So the coefficients a and b in eq. (2.8) depend, at the most, on q2 but not on q1.

Now we would like to argue that a and b are universal to the leading order in α. For this it

is sufficient to look at the entropy function including just the 1-loop terms. Then we have

f(v1, v2, v3, v4) = Sg(v1, v2, v3, v4)
︸ ︷︷ ︸

string tree−level

+ Th0(v1, v2, v3, v4)
︸ ︷︷ ︸

string one−loop

(2.9)

where h0 = h(α = 0). This leads to the entropy

SBH = 4π
q1v3

T
= 4π

√

q1q2v3v4 − q1v3h0 (2.10)

and the near horizon values of the scalar fields

T =

√
v3q1

v4q2 − h0
, S =

q2 − ∂v4
h0

∂v4
g

√
v3q1

v4q2 − h0
. (2.11)

Now for α = T/S ¿ 1 or in other words when q2 À 1 we can treat the equations of motion

obtained from (2.9) perturbatively in α. This results in ∂v1
g = 0, ∂v2

g = 0 to the leading

order. These together with g = 0 and the perturbative approximation to the equation of

motion for T which is v3∂v3
g = v4∂v4

g provide four equations independent of the charges

to solve for v1, v2, v3 and v4. Furthermore, note that for the higher-derivative expansion

to make sense we need T À 1 or in other words q1 À q2. However, it is not necessary

to impose this constraint to get the above scaling. Thus, we see that the scaling of the

macroscopic entropy is indeed of the type given by equation eq. (2.10).

One would naively have expected, based on the tree-level result S ∼
√

q1q2, to go to

zero in the q2 → 0 limit and hence string coupling to blow up. However S and T remain

– 5 –
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sensible in the q2 → 0 limit and scale the same way, i.e.,
√

q1. Thus the 10-dimensional

string coupling is independent of the charges in this limit as g2
s ∼ T/S ∼ O(1). This

suggests that in this limit, both α′ and gs corrections become equally important.

It is the opposite limit q1 → 0 that appears problematic at first sight. This is not

entirely unexpected as T → 0 in this limit and hence the higher-derivative expansion

breaks down. In general, when one dimensionally reduces an action, one misses terms in

the lower dimensional theory which vanish on taking the decompactification limit. A well-

known example is the dimensional reduction of the M-theory R4 term which gives only the

1-loop type IIA R4 term while the tree-level term arises due to Kaluza-Klein effects in the

11-dimensional theory on a circle [18]. Such terms typically come with inverse powers of

the compact volume so that on taking the decompactification limit, they vanish. In our

context this must be the reason for the lack of T-duality invariance of the entropy. This

may be cured by making the function f invariant under T-duality T → 1/T which we will

turn to next.

A T-dual invariant scaling: This motivates us to write a T-dual invariant entropy

function of the form

f = Sg + (T +
1

T
)h0 , (2.12)

keeping terms only upto the string 1-loop order. Repeating the above analysis for this

function yields

SBH = 4π
√

(q1v3 − h0)(q2v4 − h0) , (2.13)

T =

√

q1v3 − h0

q2v4 − h0
, (2.14)

S =

√

(q1q2v4 − q1h0 − (q1v3 + q2v4 − 2h0)∂v3
h0) (q1 ↔ q2, v3 ↔ v4)

∂v3
g∂v4

g(q1v3 − h0)(q2v4 − h0)
. (2.15)

This entropy is manifestly T-duality invariant, i.e., under q1 ↔ q2, v3 ↔ v4 as expected. In

order to argue for (leading order) universality of vi there are now three possibilities: (a)

S À T À 1/T so that n À w À 1 or S À 1/T À T so that w À n À 1, (b) q1 = 0,

(c) q2 = 0. Note that when q1 = q2 = 0 then, h0 = 0 and SBH = 0 as it should be. We

should however mention that the above T-duality invariant entropy function in eq. (2.12)

is not derived from first principles and therefore should be considered as an illustrative toy

model.3

3. Microstate re-counting

We have seen that, when one includes string-loop corrections, the scaling of the entropy

of the two-charge extremal black hole is different from the string tree-level one. One still

needs to compute the universal numbers a and b that appear in eq. (2.8) with explicit

3For recent work on T-dual modifications due to α′ corrections in the context of small black holes,

see [25]
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higher derivative corrections. Unfortunately one does not have much control over the

relevant higher derivative terms. Here we assume that a and b in eq. (2.8) are going to be

non-zero.4 Such modification of the entropy cannot be accounted for just by counting the

degeneracy of the bound states, namely, the Dabholkar-Harvey states in the first quantized

string theory. This is so because the corrections to the leading entropy coming from the

bound state counting depend only on the combination q1q2 ∼ nw whereas string-loop

corrections depend on q1/q2 ∼ n/w as well.

Motivated by the discussion of the D0-charged black hole [10] in the introduction, we

propose to include a subset of multi-strings states which carry exactly the same quantum

numbers and are (at least) classically supersymmetric. In the case of the FP system there

are continuous zero-modes corresponding to separating the centers of mass of different

strings in a multi-string state spatially in the compact and non-compact directions. To do

a counting of discrete states we suppress these modes and consider only one state in each

such continuous family. Then the problem boils down to counting the number of ways one

can distribute the total winding and momentum over several different (chiral and bosonic)

strings.

3.1 Multi-string partition function

Let us write down a partition function including this discrete subset of the full set of

multi-string states of the FP system. Recall that for the single string we have

m(R) =
n

R
+

R w

α′
, N := NL − 1 = n w (3.1)

where NL is the left-moving oscillator number. Then the single-string partition function is

f24(q) =

∞∏

k=1

1

(1 − qk)24
=

∞∑

N=0

p24(N) qN . (3.2)

One can give a closed-form expression for the multi-string partition function that we seek

as well. The result is as follows:

Z(x, y) = f1(x)f1(y)f2(x, y) (3.3)

where

f1(x) =
∞∏

k=1

1

1 − xk
=

∞∑

k=0

p(n)xn (3.4)

with p(n) being the number of partitions of n and

f2(x, y) =
∞∏

k,l=1

1

(1 − xkyl)p24(kl)
(3.5)

with p24(n) being the number of 24-colored partitions of n, generated by equation (3.2). To

see this let us note that any multi-string state with total winding and momentum given by

4We provide evidence in favour of this assumption in section 4.
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n and w has three types of constituent strings: (i) those carrying purely winding number,

i.e, n = 0, (ii) those carrying purely momentum number, i.e, w = 0 and (iii) those with

both winding and momentum non-zero. So the full partition function for multi-string states

is given by the product of three pieces. The first two pieces are the multi-string partition

functions of the first two species of strings listed above respectively. These are the same

as the generating functions for number of partitions, namely, f1(x) and f1(y).

For the third piece, consider multi-string states with each constituent string having

momentum k and winding l. Since the component strings can be treated as indistinguish-

able bosons with each string having p24(kl) ‘flavours’, the degeneracy for a p-string state

is given by the number of components of a symmetric rank-p tensor whose indices can

take p24(kl) values. This number is (p24(kl)−1+p)!
p!(p24(kl)−1)! . Therefore the partition function for

multi-string states with each string carrying charges (k, l) is:

∞∑

p=0

(p24(kl) − 1 + p)!

p!(p24(kl) − 1)!
(xkyl)p = (1 − xkyl)−p24(kl) . (3.6)

Then the full partition function of the states with both non-zero charges is simply given

by taking the product of terms in eq. (3.6) over non-zero k and l which gives f2(x, y). This

completes the proof of the two-charge multi-string partition function of eq. (3.3).

We should point out that there is a BPS degeneracy of 16 for each 1/4-BPS state in the

single string Hilbert space coming from the fermionic zero-modes in the right-moving sector

of heterotic string and we have not taken these into account. If we are to include them as

number of ‘flavours’ for each string then the full partition function will be Z16(x, y). It is

not clear to us if one should include this degeneracy into the counting or not. However the

results below can be modified easily to incorporate such an extra power and the qualitative

features remain the same as without these extra states.

We should next analyze5 the partition function in eq. (3.3) to extract the statistical

entropy. We will look at the special cases of n = 1, 2 and w À 1.

3.2 Example 1: n = 1, w À 1

Consider the case when the total momentum w À 1 and winding n = 1. The partition

function of this case is given by the coefficient of x in the full partition function which is

f1(y) [1 +
∞∑

k=1

p24(k) yk] = f1(y)f24(y) =
∞∏

k=1

1

(1 − yk)25
=

∞∑

w=0

p25(w) yw (3.7)

So the degeneracy is simply given by p25(w) which in the large w limit can be easily shown

to yield

exp(π
√

w
√

16
︸︷︷︸

α′

+ 2/3
︸︷︷︸

string loop

) . (3.8)

This gives entropy π
√

w
√

16 + 2/3 consistent with that in eq. (2.8).

5We thank J. Lucietti for discussions in section 3.2 and 3.3.
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3.3 Example 2: n = 2, w À 1

Now consider the case n = 2 and w À 1. The full partition function can be expanded to

keep all terms of order x2:

∞∏

k=1

1

1 − yk

[

2 +
∞∑

m=1

p24(m) ym +
1

2

∞∑

m=1

[p24(m) + p2
24(m)] y2m

+
∞∑

m<n

m,n=1

p24(m) p24(n) ym+n +
∞∑

n=1

p24(2n) yn
]

x2 . (3.9)

Noticing that one can identify most of the terms here as those in the expansion of

1

2
(1 +

∞∑

m=1

p24(m) ym)(1 +
∞∑

n=1

p24(n) yn) =
1

2
+

∞∑

m=1

p24(m) ym

+
1

2

∞∑

m,n=1

p24(m) p24(n) ym+n (3.10)

and then recognizing this as simply 1
2(

∏∞
k=1

1
(1−yk)24

)2 = 1
2(

∏∞
k=1

1
1−yk )48 we can rewrite

the above n = 2 partition function as

∞∏

l=1

1

1 − yl

[

1

2
(
∞∏

k=1

1

1 − yk
)48 +

1

2
(1 +

∞∑

m=1

p24(m) y2m) + (1 +
∞∑

n=1

p24(2n) yn)

]

x2. (3.11)

Then the coefficient of yw reads:

1

2
p49(w) +

1

2

w∑

k=0

δ[ w−k
2

]−w−k
2

p(k) p24(
w − k

2
) +

w∑

k=0

p(k) p24(2w − 2k) . (3.12)

The last term is the one coming from multi-string states with both units of momentum

carried by one single string. The 2nd term goes at most like p(w) or p24(w/2) and so can

be dropped in comparison to the first and the third. We will now see that the 1st and 3rd

term behave the same way for large w. The proof is as follows. First note that

g(x) =
1

2

(
f24(

√
x) + f24(−

√
x)

)
=

∑

p24(2n)xn . (3.13)

Then it is easy to see that the 3rd term simply becomes the coefficient of xw in f(x)g(x).

Let us find out how f(x)g(x) behaves near x → 1 which is where we expect the maximum

contribution. f(x)g(x) is made of two terms. The first term can be written as [19]

exp

(

−
∞∑

n=1

log(1 − xn) − 24

∞∑

n=1

log(1 − xn/2)

)

= exp





∞∑

m,n=1

xmn

m
+ 24

∞∑

m,n=1

xmn/2

m





= exp

(
∑

m

[
xm

m(1 − xm)
+ 24

xm/2

m(1 − xm/2)
]

)

∼ exp

(

1

1 − x

∑

m

1

m2
+

24 × 2

m2

)

= exp

(
1

1 − x

49π2

6

)

. (3.14)
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The second term is

exp

(

−
∞∑

n=1

log(1 − xn) − 24

∞∑

n=1

log(1 − (−1)nxn/2)

)

, (3.15)

and following the same steps as above we get

exp

(
∑ xm

m(1 − xm)
+ 24

(−1)mxm/2

m(1 − (−1)mxm/2)

)

. (3.16)

Now writing (−1)m = eπim and putting e2πix = 1 + h we can show that this term behaves

exactly like the first term in g(x)f(x). These manipulations are similar to those found

in [19] and it would be nice to have a proof based on modular properties of the functions

also. We will not attempt this here.

Now it is easy to see that the third term will behave in the same manner for large w

as the first term. Hence we conclude that for the n = 2, w À 1 case (similarly for w = 2,

n À 1 with w,n interchanged), the entropy is given by

π
√

w
√

16 × 2 + 2/3 . (3.17)

We are investigating the generalization of this formula to all n separately [24]. The result

to be expected for large n,w may be

Sstat = π

√

16nw +
2

3
n +

2

3
w ,

or some other formula which reduces to the cases studied above. It will be interesting to

see exactly which T-duality invariant formulae is correct by considering the case of general

n and w on the counting side.

4. Evidence from the near horizon

Since Wald’s entropy for an extremal black hole depends on the lagrangian evaluated on

the near horizon geometry alone, it is natural to suspect that it can be evaluated by a

counting of states in string theory on the near horizon geometry of the black hole (see for

example [22]). However we have argued so far that the entropy of the two-charge black

holes could include contributions from a subset of non-bound states as well.

If true, these proposals should mean that the full entropy of an extremal black hole

coming from counting the corresponding BPS states in the holographically dual supercon-

formal quantum theory on the boundary of the near horizon geometry should also include

the contributions coming from the subset of non-bound states like those considered in sec-

tion 3. We suggest that this is indeed the case. In what follows we sketch two computations

towards providing evidence for our modified scaling of the entropy of eq. (2.8). For this,

note that, even though the scaling eq. (2.8) is derived in heterotic on T 6 it should be valid

for black holes in all of the following three duality frames.

1. F-strings with momentum and winding in heterotic on T 6,
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2. D0-D4 brane system in type IIA on K3 × T 2,

3. D1-D5 brane system in type IIB on K3 × T 2.

We ask whether the entropy scaling
√

n(aw + b) could be seen by counting the near horizon

microstates in any/all of these duality frames. Good laboratories to answer this question

are the holographic duals of string theories in the respective near horizon geometries. In

particular, the superconformal quantum mechanics of [22] related to the second duality

frame and the 2-dimensional D1-D5 CFT relevant for the third duality frame. Below

we sketch two computations towards extracting information of microstates which cannot

be associated with the bound states (as seen from the asymptotic flat space) from these

boundary theories.

4.1 Superconformal quantum mechanics

First we consider the superconformal quantum mechanics describing D0 branes in the

AdS2 × S2 × CY3 attractor geometry of a black hole in type IIA with D4-branes on the

CY3. This quantum mechanics has a class of chiral primaries which have been identified

with the microstates of the black hole. It was shown in [22] that the Bekenstein-Hawking

area law for a large black hole could be reproduced exactly from the asymptotic degeneracy

of these chiral primaries. The chiral primary generating function was argued to be

Z =

∞∏

n=1

(1 + qn)h1+h3

(1 − qn)h0+h2

=

∞∑

N=0

qNd(N) , (4.1)

where

h0 = D +
1

12
c2 · P, h1 = 3D −

3

4
c2 · P −

χ

2

h2 = 3D −
3

4
c2 · P +

χ

2
, h3 = D +

1

12
c2 · P , (4.2)

with D = DABCPAPBPC . The DABC are the intersection numbers and PA are the D4-

brane charges. The above partition function is the same as that for a CFT with h1 + h3

fermions and h0 +h2 bosons. The asymptotic value of d(N) in equation (4.1) can be shown

to be

d(N) ∼ exp

(

2π

√

N(D −
1

6
c2 · P +

χ

24
)

)

, (4.3)

In [22], the authors only considered the leading term proportional to D. However, in the

two-charge small black hole example we have to set D = 0. Then we arrive at the relevant

formula for the statistical entropy which is clearly of the form
√

n(w + b). Furthermore,

note that if we replace CY3 by K3 × T 2 we have c2 · P = −24w with χ = 24. This results

in

SBH = π
√

16nw + 4n . (4.4)

Curiously, this naive replacement produces the correct leading order term 4π
√

nw for the

two-charge black hole in type IIA on K3×T 2 with D0 and D4-branes. The entropy of this

– 11 –
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system was worked out in a different way in [23] although the authors obtained only the

leading term in their approach.

It would be desirable to repeat the calculation for K3× T 2 rigorously. If for example,

one could argue convincingly that the counting should be such that b = 0 one would have

the basis of a non-renormalization theorem suggesting no loop corrections to the entropy

formula which would definitely merit attention.6

We note however, that IIA on CY3 is related by duality to heterotic on K3 × T 2

and hence we have a prediction in eq. (4.4) for the microscopic side for this theory. The

prepotential for heterotic on K3 × T 2 was given, for example, in [9] and it would be very

interesting to see if the macroscopic calculation can be done in this case.

In the next subsection we pose the same question in terms of the central charge of

the CFT living on the boundary of AdS3 × S2 which can be obtained by lifting the near

horizon geometry of the two-charge black in the third duality frame (type IIB on K3× T 2

with D1 and D5-branes) to five dimensions.

4.2 Corrections to AdS3 central charge

To begin with one has to establish a connection between the central charge of AdS3 and

the entropy of two-charge small black holes. We will start with the D1-D5-P system and

assume that the relation derived between the central charge and the black hole entropy

continues to hold even when one of the three charges is switched off and we have a small

black hole.

Since the central charge of AdS3 is inversely proportional to G3, the 3-dimensional

Newton constant and the entropy of the black hole is inversely proportional to the 2-

dimensional Newton constant G2 = G3/T , we expect the central charge c of AdS3 to be

proportional to F/T , where F is the entropy function at its extremum, i.e., the black hole

entropy. It can be shown that this is indeed the case. We get

F =
π

6
c(l)T̃ , (4.5)

where T = l2T̃ and F and c are evaluated at their extremum. Please see the appendix for

a derivation of eq. (4.5).

This relation is expected to hold for large T as it involves dimensional reduction.

Chern-Simons terms can be absorbed into the definition of c(l). Although the formula (4.5)

was derived in the appendix with the 3-charge black hole in mind we expect it to hold for

the two-charge small black hole as well. Let us cross-check this formula (4.5) with a known

result for the two-charge small black hole. We know that for the black hole in heterotic on

T 6, F = 4π
√

nw, T̃ =
√

n/w. Hence we expect from (4.5) that c = 24w. This is precisely

6Noting that the Betti numbers for K3, b0 = 1, b1 = 0, b2 = 22, b3 = 0, b4 = 1 and taking into account

the Landau degeneracy due to the magnetic field into account, our preliminary analysis7 suggests assigning

an entropy of 4π
p

n(w + 1/2) to the K3 × T 2 small black hole. Similarly if we take CY 3 to be T 6 we get

2
√

2π
p

n(w + 1). Curiously, both these formulae can be written as π
p

n(cLw + cR). From our multi-string

counting this requires replacing f1 by fcR

1
. We hope to return to these issues in a future work.

7We thank J. Sonner for discussions on this.
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the central charge8 obtained from holographic Weyl anomaly related arguments by Kraus

and Larsen [16].

We now expect that if there are string-loop corrections to the black hole entropy, these

can be mapped (at least when T is large) to the corrections to the central charge in AdS3

associated with the black hole. Let us give a heuristic explanation how such corrections

could arise macroscopically. It was shown in [16, 17] that the central charge in higher

derivative gravity is given by

c =
lAdS

2G3
gµν

∂L3

∂Rµν

∼
lAdS

lP
(c0 + g2

sc1 + g4
sc2 + · · ·) , (4.6)

where lP ∝ g2
s is the Planck length and we anticipate higher-derivative corrections in the

3-dimensional Lagrangian to be weighted by lP /lAdS. Now noting that with lstring = 1 we

expect for small black holes lAdS ∼ O(1) and using Sen’s scaling result to put g2
s = 1/w we

find

c ∼ c0w + c1 + c2/w + · · · ,

and hence the black hole entropy can sum to behave like

SBH ∼
√

n(aw + b) ,

as our scaling arguments predict. It will be interesting to explicitly compute the corrections

to the central charge using the technology developed in [21] and verify that it indeed

respects the above scaling.

5. Discussion

We have shown using general scaling arguments and incorporating the 10-dimensional

string-loop higher derivative corrections that the entropy of the two-charge extremal small

black holes in heterotic string on T 6 can get corrections that cannot be accounted for by

the standard bound state counting alone. We found that the modified entropy behaves as

SBH ∼
√

q1(a q2 + b) ,

where a and b become independent of charges in specific limits, namely q1 À q2 À 1 or if

one of the charges is set to zero. On the microscopic counting side, we included by hand

a certain subset of multi-string configurations and found for two separate cases that their

counting also has the same behaviour as predicted by the scaling argument. We presented

a conjecture that for a two-charge small black hole carrying momentum n, winding w and

n À w À 1, the entropy should be given by

Sstat = π

√

16nw +
2

3
w .

8More precisely, in presence of Chern-Simons terms the central charge splits into cL and cR with cL 6= cR.

In the black hole entropy considered in the literature, only cL or cR enters. In the notation of [16], this is

the left-moving central charge.
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We further argued that Wald’s entropy including string-loop corrections can be eval-

uated by counting appropriate BPS states in the near horizon geometry of the black hole.

We have provided partial evidence for this by considering the chiral primary states in the

holographically dual superconformal quantum mechanics of [22] on the boundary of the

near horizon geometry of CY black holes in type IIA. We also sketched a computation of

string loop corrections to the central charge of the dual CFT of AdS3 and its relation to the

entropy of the two-charge black holes. It will be interesting to see if one can recover the full

partition function that we wrote down from a counting completely within the near horizon

theory or its holographic dual. If, on the other hand, one could convincingly demonstrate

that the microstate counting dictates b = 0 in any of the duality frames, then it would

mean that macroscopic string loop corrections would be absent, which would merit further

attention.

Finally, it will be interesting to see if there are potential corrections to the entropy

of some of the large extremal black holes as well in string theory which may come from

microstates other than the standard bound states in analogy to the multi-string states

considered in section 3. For instance, it is possible that Wald’s entropy of the D1-D5-P

black hole admits corrections so that when one of the charges is set to zero one recovers

the entropy of the two-charge black hole that we considered here. We hope to return to

some of these questions in the near future.

A. Derivation of eq. (4.5)

Here we will follow [20] closely. The starting point is the AdS3 part of the near horizon

geometry of the D1-D5-P system which is given by

ds2
3 = l2T 2(dx5 +

dt

R
)2 +

U2

l2
(R2dx2

5 − dt2) + l2
dU2

U2
, (A.1)

where the asymptotic radius of S1 around which momentum n flows is given by R and the

variables T, l are defined as

T =

√
n

k
, l4 = g2

6k, k = Q1Q5 , (A.2)

where g6 is the six-dimensional coupling and the quantity T is the near horizon value of

the radius of S1. To get AdS2 from AdS3 we write the metric as

ds2
3 = ds2

2 + l2e2ψ(dx5 + Atdt)2 , (A.3)

where after rescaling t by R, U by l2/R and performing the change of variables U2 = 4r

e2ψ = T 2 + 4r , (A.4)

At = T 2e−2ψ , (A.5)

ds2
2 = −

16

l2(T 2 + 4r)
r2dt2 + l2

dr2

r2
+ l2e2ψ(dx5 + Atdt)2 . (A.6)
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The AdS2 factor is obtained by taking a “near near-horizon” limit U/T → 0. This yields

after rescaling t by 4/(l2T )

ds2
3 = l2(−r2dt2 +

dr2

r2
) + l2e2ψ(dx5 + Atdt)2 , (A.7)

where now

At =
l2

4

T 3

T 2 + 4r
≈

l2

4
T (1 −

4r

T 2
) , (A.8)

giving Frt = −l2/T = e. Following Kraus and Larsen [16], Sahoo and Sen [12], we define

the “central-charge” function c as follows. From equation (A.7)

√
−detG = l3T , (A.9)

then defining

f0 = 2π
√
−detGL

(3)
0 = −

c(l)

24

T

l2
, (A.10)

we get following Sen’s entropy function analysis, the entropy function

F = 2π(qe − f0) = 2π(
q

T̃
+

c(l)

24
T̃ ) , (A.11)

where T = l2T̃ and extremising with respect to T̃ , l yields

F =
π

6
c(l)T̃ ,

all evaluated at the extremum. This gives us our proposed relation c ∼ F/T with propor-

tionality constant 6/π.

Acknowledgments

We thank Allen Chen, Daniel Cremades, Atish Dabholkar, Michael Green, James Lucietti,

Gautam Mandal, Samir Mathur, Rob Myers, Annamaria Sinkovics, Julian Sonner, Ashoke

Sen and David Tong for discussions. AS acknowledges support from PPARC and Gonville

and Caius college, Cambridge. NVS would like to thank DAMTP and the Indian research

Institutes IoPB, IISc, IITM, IMSc, HRI, IACS and TIFR for hospitality at various stages

of this work. Research at Perimeter Institute is supported in part by the Government of

Canada through NSERC and by the Province of Ontario through MEDT.

References

[1] A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301

[hep-th/0409148].

[2] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Supersymmetric black hole

solutions with R2 interactions, hep-th/0003157;

A. Dabholkar, R. Kallosh and A. Maloney, A stringy cloak for a classical singularity, JHEP

12 (2004) 059 [hep-th/0410076];

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C241301
http://arxiv.org/abs/hep-th/0409148
http://arxiv.org/abs/hep-th/0003157
http://jhep.sissa.it/stdsearch?paper=12%282004%29059
http://jhep.sissa.it/stdsearch?paper=12%282004%29059
http://arxiv.org/abs/hep-th/0410076


J
H
E
P
1
0
(
2
0
0
6
)
0
3
4

V. Hubeny, A. Maloney and M. Rangamani, String-corrected black holes, JHEP 05 (2005)

035 [hep-th/0411272];

B. de Wit, Introduction to black hole entropy and supersymmetry, hep-th/0503211;

Supersymmetric black holes, Fortschr. Phys. 54 (2006) 183 [hep-th/0511261];

T. Mohaupt, Strings, higher curvature corrections and black holes, hep-th/0512048;

G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Black hole partition functions and

duality, JHEP 03 (2006) 074 [hep-th/0601108].

[3] A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes,

JHEP 10 (2005) 096 [hep-th/0507014];

[4] A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995)

2081 [hep-th/9504147].

[5] A. Sen, Black holes, attractors, elementary strings etc., Lectures given at the Perimeter

Institute, Canada (2005).

[6] A. Sen, Stretching the horizon of a higher dimensional small black hole, JHEP 07 (2005) 073

[hep-th/0505122]; Black hole entropy function and the attractor mechanism in higher

derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177]; Entropy function for heterotic

black holes, JHEP 03 (2006) 008 [hep-th/0508042].

[7] A. Sen, How does a fundamental string stretch its horizon?, JHEP 05 (2005) 059

[hep-th/0411255]; Black holes and the spectrum of half-BPS states in N = 4 supersymmetric

string theory, Adv. Theor. Math. Phys. 9 (2005) 527 [hep-th/0504005].

[8] R.M. Wald, Black hole entropy in the Noether charge, Phys. Rev. D 48 (1993) 3427

[gr-qc/9307038];

T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys.

Rev. Lett. 70 (1993) 3684 [hep-th/9305016];

T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity,

gr-qc/9502009.

[9] K. Behrndt et al., Classical and quantum N = 2 supersymmetric black holes, Nucl. Phys. B

488 (1997) 236 [hep-th/9610105].

[10] A. Sinha and N.V. Suryanarayana, Extremal single-charge small black holes: entropy function

analysis, Class. and Quant. Grav. 23 (2006) 3305 [hep-th/0601183];

[11] N.V. Suryanarayana, Half-BPS giants, free fermions and microstates of superstars, JHEP 01

(2006) 082 [hep-th/0411145];

[12] B. Sahoo and A. Sen, BTZ black hole with Chern-Simons and higher derivative terms, JHEP

07 (2006) 008 [hep-th/0601228].

[13] A. Ghodsi, R4 corrections to D1-D5-P black hole entropy from entropy function formalism,

hep-th/0604106.

[14] R.-G. Cai and D.-W. Pang, Entropy function for 4-charge extremal black holes in type-IIA

superstring theory, Phys. Rev. D 74 (2006) 064031 [hep-th/0606098];

B. Chandrasekhar, Born-Infeld corrections to the entropy function of heterotic black holes,

hep-th/0604028;

S. Parvizi and A. Tavanfar, Partition function of non-supersymmetric black holes in the

supergravity limit, hep-th/0602292;

– 16 –

http://jhep.sissa.it/stdsearch?paper=05%282005%29035
http://jhep.sissa.it/stdsearch?paper=05%282005%29035
http://arxiv.org/abs/hep-th/0411272
http://arxiv.org/abs/hep-th/0503211
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C54%2C183
http://arxiv.org/abs/hep-th/0511261
http://arxiv.org/abs/hep-th/0512048
http://jhep.sissa.it/stdsearch?paper=03%282006%29074
http://arxiv.org/abs/hep-th/0601108
http://jhep.sissa.it/stdsearch?paper=10%282005%29096
http://arxiv.org/abs/hep-th/0507014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA10%2C2081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA10%2C2081
http://arxiv.org/abs/hep-th/9504147
http://jhep.sissa.it/stdsearch?paper=07%282005%29073
http://arxiv.org/abs/hep-th/0505122
http://jhep.sissa.it/stdsearch?paper=09%282005%29038
http://arxiv.org/abs/hep-th/0506177
http://jhep.sissa.it/stdsearch?paper=03%282006%29008
http://arxiv.org/abs/hep-th/0508042
http://jhep.sissa.it/stdsearch?paper=05%282005%29059
http://arxiv.org/abs/hep-th/0411255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C9%2C527
http://arxiv.org/abs/hep-th/0504005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3427
http://arxiv.org/abs/gr-qc/9307038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C3684
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C3684
http://arxiv.org/abs/hep-th/9305016
http://arxiv.org/abs/gr-qc/9502009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB488%2C236
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB488%2C236
http://arxiv.org/abs/hep-th/9610105
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C23%2C3305
http://arxiv.org/abs/hep-th/0601183
http://jhep.sissa.it/stdsearch?paper=01%282006%29082
http://jhep.sissa.it/stdsearch?paper=01%282006%29082
http://arxiv.org/abs/hep-th/0411145
http://jhep.sissa.it/stdsearch?paper=07%282006%29008
http://jhep.sissa.it/stdsearch?paper=07%282006%29008
http://arxiv.org/abs/hep-th/0601228
http://arxiv.org/abs/hep-th/0604106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C064031
http://arxiv.org/abs/hep-th/0606098
http://arxiv.org/abs/hep-th/0604028
http://arxiv.org/abs/hep-th/0602292


J
H
E
P
1
0
(
2
0
0
6
)
0
3
4

B. Chandrasekhar, S. Parvizi, A. Tavanfar and H. Yavartanoo, Non-supersymmetric

attractors in R2 gravities, JHEP 08 (2006) 004 [hep-th/0602022];

M. Alishahiha and H. Ebrahim, New attractor, entropy function and black hole partition

function, hep-th/0605279;

P. Prester, Lovelock type gravity and small black holes in heterotic string theory, JHEP 02

(2006) 039 [hep-th/0511306];

B. Sahoo and A. Sen, Higher derivative corrections to non-supersymmetric extremal black

holes in N = 2 supergravity, hep-th/0603149.

[15] R. Kallosh and A. Linde, Strings, black holes and quantum information, Phys. Rev. D 73

(2006) 104033 [hep-th/0602061].

[16] P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives,

JHEP 09 (2005) 034 [hep-th/0506176]; Holographic gravitational anomalies, JHEP 01

(2006) 022 [hep-th/0508218].

[17] H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys.

Lett. B 471 (2000) 358 [gr-qc/9909061].

[18] M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven dimensions, Phys. Lett. B 409

(1997) 177 [hep-th/9706175].

[19] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 1: Introduction,

Cambridge, Uk: Univ. Pr. (1987).

[20] A. Strominger, AdS2 quantum gravity and string theory, JHEP 01 (1999) 007

[hep-th/9809027].

[21] A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3, Adv. Theor.

Math. Phys. 2 (1998) 733 [hep-th/9806194];

D. Kutasov and N. Seiberg, More comments on string theory on AdS3, JHEP 04 (1999) 008

[hep-th/9903219];

A. Giveon and D. Kutasov, Notes on AdS3, Nucl. Phys. B 621 (2002) 303 [hep-th/0106004].

[22] D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP

11 (2005) 017 [hep-th/0412322].

[23] S. Kim and J. Raeymaekers, Superconformal quantum mechanics of small black holes, JHEP

08 (2005) 082 [hep-th/0505176].

[24] J. Lucietti, A. Sinha and N.V. Suryanarayana, work in progress.

[25] G. Exirifard, The alpha’ stretched horizon in heterotic string, hep-th/0604021.

– 17 –

http://jhep.sissa.it/stdsearch?paper=08%282006%29004
http://arxiv.org/abs/hep-th/0602022
http://arxiv.org/abs/hep-th/0605279
http://jhep.sissa.it/stdsearch?paper=02%282006%29039
http://jhep.sissa.it/stdsearch?paper=02%282006%29039
http://arxiv.org/abs/hep-th/0511306
http://arxiv.org/abs/hep-th/0603149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C104033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C104033
http://arxiv.org/abs/hep-th/0602061
http://jhep.sissa.it/stdsearch?paper=09%282005%29034
http://arxiv.org/abs/hep-th/0506176
http://jhep.sissa.it/stdsearch?paper=01%282006%29022
http://jhep.sissa.it/stdsearch?paper=01%282006%29022
http://arxiv.org/abs/hep-th/0508218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB471%2C358
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB471%2C358
http://arxiv.org/abs/gr-qc/9909061
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB409%2C177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB409%2C177
http://arxiv.org/abs/hep-th/9706175
http://jhep.sissa.it/stdsearch?paper=01%281999%29007
http://arxiv.org/abs/hep-th/9809027
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C733
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C733
http://arxiv.org/abs/hep-th/9806194
http://jhep.sissa.it/stdsearch?paper=04%281999%29008
http://arxiv.org/abs/hep-th/9903219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB621%2C303
http://arxiv.org/abs/hep-th/0106004
http://jhep.sissa.it/stdsearch?paper=11%282005%29017
http://jhep.sissa.it/stdsearch?paper=11%282005%29017
http://arxiv.org/abs/hep-th/0412322
http://jhep.sissa.it/stdsearch?paper=08%282005%29082
http://jhep.sissa.it/stdsearch?paper=08%282005%29082
http://arxiv.org/abs/hep-th/0505176
http://arxiv.org/abs/hep-th/0604021

